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Neural Networks

Transformers and Crossmodal Learning


Lecture by Dr. Jae Hee Lee



▪ Self-Attention

▪ Transformer (Architecture, Training, Inference)

▪ Transformer Applications

▪ Crossmodal Learning
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▪ Self-Attention

• Representation Learning

• Sequence-to-Sequence Models

• Self-Attention


▪ Transformers

▪ Transformer Applications

▪ Crossmodal Learning
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▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a 

given task;
• is called a representation or a feature 

vector; and
▪ DL research = “how to learn good 

representations?”.
▪ Different building blocks are introduced to 

learn good representations.
▪ In this lecture, we will learn a new building 

block: self-attention.
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4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers

 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput



▪ Input: a sequence of vectors.
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▪ Example: Machine translation

• Input: How are you?
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▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ Q: How to turn a sequence of words into 
a sequence of vectors?
• A: Use one-hot encoding

▪ Q: How to handle different lengths of 
sequences?
• A: Use an RNN with a special end-

of-sentence token.  

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector



▪ Main Problem: In an RNN (or LSTM) far 
away words are not much related. 
• Jane went to the cafeteria to buy a 

cup of coffee, but she couldn't buy 
anything because it was closed.
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▪ Main Problem: In an RNN (or LSTM) far 
away words are not much related. 
• Jane went to the cafeteria to buy a 

cup of coffee, but she couldn't buy 
anything because it was closed.

▪ All the information is encoded in one 
vector.

▪ Solution: Self-Attention
• Represent the current word using 

the representations of all other 
words.

• But how does self-attention work in 
detail?

Limitation of RNNs
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▪  is a matrix (trainable).V
▪ Compute the value vectors


• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

▪ How to obtain the weights ?αi
1, …, αi

m

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017
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▪ Deep Learning allows for learning good representations.

▪ There are different DL building blocks for learning good representations.

▪ Self-attention is a DL building block that overcomes limitations of an RNN.
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▪ Sequence-to-Sequence Model.
▪ Based on self-attention.
▪ Transformer literally “transformed” 

current deep learning architectures.

• Natural Language Processing  

(ChatGPT!, BERT, GPT, …)

• Vision (ViT, …)

• Speech (Conformer, …)

• Bioinformatics (AlphaFold, …)

• Crossmodal Learning (LXMERT, ViL-

BERT, …)

• …

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017
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Transformer Variants

13 T. Lin, Y. Wang, X. Liu, and X. Qiu, “A Survey of Transformers.” 2021

A Survey of Transformers 7

X-
fo

rm
er

s

Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]

Relative Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. TUPE[63], Roformer[124]

Implicit Rep. Complex Embedding[140], R-Transformer [144], CPE[20]

LayerNorm

Placement post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]

Substitutes AdaNorm[153], scaled ✓2 normalization[93], PowerNorm[121]

Norm-free ReZero-Transformer[5]

FFN

Activ. Func. Swish[106], GELU[14, 28], GLU[118]

Enlarge
Capacity

Product-key Memory[69], Gshard[71], Switch Transformer[36],
Expert Prototyping[155], Hash Layer[110]

Dropping All-Attention layer[127], Yang et al. [157]

Arch.
Level

Lighweight Lite Transformer[148], Funnel Transformer[23], DeLighT[91]

Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]
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▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ Ground-truth one-hot vectors 

 with the “BOS” vector are 
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output  is compared against 
ground-truth  to compute the 
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

▪ Q: If  is fed to the decoder 
simultaneously, how does the model (avoid 
cheating and) learn to predict  from ?

y1, y2, …, yn−1

yt+1 yt
• A: Masked self-attention prevents using 

the information of  with .yt+i i ≥ 1
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▪ Transformer encoder and decoder are based on self-attention.

▪ Decoder uses cross-attention.

▪ Masked self-attention in the decoder allows for parallel processing.

Summary
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Questions?
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▪ Background

▪ Transformers

▪ Transformer Applications


• Machine Translation (vanilla Transformer)

• Text Classification (BERT)

• Text Generation (GPT, ChatGPT)

• Image Classification (ViT)


▪ Crossmodal Learning

Transformer Applications

21
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▪ BERT (Bidirectional Encoder 
Representations from Transformers)

▪ BERT helps Google provide better 
results since November of 2020.

▪ Example: “Can you get medicine for 
someone pharmacy”
• Pre-BERT: (Irrelevant) Information 

about getting a prescription filled.
• Post-BERT: Google understands 

that “for someone” relates to picking 
up a prescription for someone else.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.

2. https://huggingface.co/blog/bert-101
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▪ Pre-Training

• Train a model on a large set of 

data.

• The model learns good 

representations of the input.

Background: Pre-Training and Fine-Tuning
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Example

▪ Train a image classification model (e.g., 

ResNet) on the ImageNet dataset.

▪ Fine-tune the model on robotic scenes.

Imagenet Target task



▪ Transformer Encoder
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▪ Transformer Encoder
▪ Pre-training dataset


• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

BERT: Architecture and Pre-training 

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT = 
Transformer


Encoder



▪ Transformer Encoder
▪ Pre-training dataset


• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model

• Input: a sentence from a the dataset.

• Mask some input tokens at random.

• Predict those masked tokens.

BERT: Architecture and Pre-training 

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT = 
Transformer


Encoder



▪ Transformer Encoder
▪ Pre-training dataset


• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model

• Input: a sentence from a the dataset.

• Mask some input tokens at random.

• Predict those masked tokens.

▪ Pre-training task 2: Next Sentence Prediction

• Input: concatenation of two sentences A 

and B.

• 50% of the time B is A’s next sentence.

• 50% of the time B is a random sentence.

BERT: Architecture and Pre-training 

25
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▪ Fine-Tuning: Use CLS for prediction.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101
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▪ Fine-Tuning: Use CLS for prediction.
▪ It achieved state-of-the-art performance 

on three classification tasks

• SQuAD (Stanford Question 

Answering Dataset)

• SWAG (Situations With Adversarial 

Generations) 

• GLUE (General Language 

Understanding Evaluation) a 
benchmark suit of nine tasks:
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▪ Fine-Tuning: Use CLS for prediction.
▪ It achieved state-of-the-art performance 

on three classification tasks

• SQuAD (Stanford Question 

Answering Dataset)

• SWAG (Situations With Adversarial 

Generations) 

• GLUE (General Language 

Understanding Evaluation) a 
benchmark suit of nine tasks:

▪ Idea introduce an extra token (CLS) for 
classification.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101
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▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
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▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an 

embedding using a linear layer 
▪ The results are fed to the Transformer 

encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer

Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m



▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an 

embedding using a linear layer 
▪ The results are fed to the Transformer 

encoder.
▪ Vision Transformers are able to capture 

global and wider range relations. 
▪ However, more training data is needed.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif
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▪ The Transformer architecture has been used in different applications.

▪ BERT is based on the Transformer encoder.

▪ GPT is based on the Transformer decoder.

Summary
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▪ Background

▪ Transformers

▪ Transformer Applications

▪ Crossmodal Learning


• Introduction

• Vision and Language Integration Methods

Crossmodal Learning

31



▪ In DL language and vision have been 
tackled separately until 2014.


▪ Integrating two or more modalities has 
recently gained increased attention.

• language, vision, speech, sound, 

proprioception, …

▪ Some crossmodal (vision and 

language) tasks:

• Image Captioning

• Visual Question Answering

• Image Retrieval

• Language-to-Image Generation

Multimodal Learning

32



Image Captioning

33  O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image Caption Generator,” CVPR 2015

Image Captioning



Visual Question Answering

34 S. Antol et al., “VQA: Visual Question Answering,” ICCV 2015

Visual Question Answering



Image Retrieval

35 A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” ICML 2021




Language-to-Image Generation

36 https://imagen.research.google/
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▪ Q: Given two vectors from two different 
modalities (e.g., vision and language) 
how would you integrate them?

▪ Concatenation

• f(v, l) = [v; l]
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▪ Q: Given two vectors from two different 
modalities (e.g., vision and language) 
how would you integrate them?

▪ Concatenation

• f(v, l) = [v; l]

▪ Element-wise Multiplication

• 


• Example: 

f(v, l) = v ⊙ l

[1
2] ⊙ [2

3] = [2
6]

Vision Language Integration Techniques
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▪ Feature-Wise Transformation

• The language input “modulates” how 

the image input is processed.


• 


•  and  are vectors computed from 
language vector  (e.g., using a 
linear layer)

f(v, l) = (αl ⊙ v) + βl

αl βl
l

Feature-Wise Transformation

38 1. https://distill.pub/2018/feature-wise-transformations/

2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018
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▪ Q: How would you integrate vision and 
language using Transformers?

Transformer-Based Models

1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019

2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019
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▪ Q: How would you integrate vision and 
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).

• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction

Transformer-Based Models
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▪ Q: How would you integrate vision and 
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).

• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction
▪ Allows better representation of 

relationships between objects and 
words.

Transformer-Based Models

1. VQA
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▪ RNNs and CNNs are constrained by the input space (1D, 2D spaces rest.)

▪ Transformer operates on sets


• Adding new modalities is easier than in the case of 

▪ How would you combine vision and language using a transformer? 


• Add new modalities and introduce modality-specific embeddings / flags.

Transformer
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Transformer-Based Models

2. PaLM-E (Pathways Language Model with Embodiment)

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.org/abs/2303.03378

https://palm-e.github.io/

http://arxiv.org/abs/2303.03378


Transformer-Based Models

2. PaLM-E (Pathways Language Model with Embodiment)

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.org/abs/2303.03378

https://palm-e.github.io/

http://arxiv.org/abs/2303.03378


▪ Crossmodal (aka multimodal) learning is an active research area.

▪ There are several ways to integrate different modalities.

▪ Transformer cross-attention can be used to integrated different modalities.

Summary
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▪ Generalizability

• Do the models generalize to new situations?


▪ Continual learning

• How can the models learn new data without forgetting previous ones?


▪ Explainability

• How do the models come to the decisions?


▪ Ethical Issues

• How can the models be aligned with human values?

Open Questions in Deep Learning Research
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Questions?
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▪ Transformer

• The Illustrated Transformer

• Dive into Deep Learning - Chapter 11: Attention Mechanisms and Transformers

• BERT 101 🤗 State Of The Art NLP Model Explained

• Stanford Seminar - Transformers United 2023: Introduction to Transformers w/ 

Andrej Karpathy

• Speech and Language Processing: Chapter 10 Transformers and Pretrained 

Language Models

• Formal Algorithms for Transformers


▪ Vision and Language Integration

• A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in Integration of Vision and 

Language Research: A Survey of Tasks, Datasets, and Methods,” JAIR 2021

Resources
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https://jalammar.github.io/illustrated-transformer/
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://huggingface.co/blog/bert-101
https://www.youtube.com/watch?v=XfpMkf4rD6E
https://www.youtube.com/watch?v=XfpMkf4rD6E
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
http://arxiv.org/abs/2207.09238
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688

