
http://www.informatik.uni-hamburg.de/WTM/

Neural Networks

Transformers and Crossmodal Learning

Lecture by Dr. Jae Hee Lee

▪ Self-Attention

▪ Transformer (Architecture, Training, Inference)

▪ Transformer Applications

▪ Crossmodal Learning

Outline

2

▪ Self-Attention

• Representation Learning

• Sequence-to-Sequence Models

• Self-Attention

▪ Transformers

▪ Transformer Applications

▪ Crossmodal Learning

Background

3

▪ Q: What is special about deep learning?

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task;
• is called a representation or a feature

vector; and

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers

 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task;
• is called a representation or a feature

vector; and
▪ DL research = “how to learn good

representations?”.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers

 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task;
• is called a representation or a feature

vector; and
▪ DL research = “how to learn good

representations?”.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers

 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

▪ Q: What is special about deep learning?
• A: Learning meaningful representations.

▪ In DL, input is transformed to a vector, which
• contains relevant information to solve a

given task;
• is called a representation or a feature

vector; and
▪ DL research = “how to learn good

representations?”.
▪ Different building blocks are introduced to

learn good representations.
▪ In this lecture, we will learn a new building

block: self-attention.

Deep Learning as Representation Learning

4 https://scholar.google.de/citations?view_op=top_venues&hl=en

Layers

 (e.g., CNN)

Vector

Classifier / Decoder

Input

O
utput

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ Q: How to turn a sequence of words into
a sequence of vectors?

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ Q: How to turn a sequence of words into
a sequence of vectors?
• A: Use one-hot encoding

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ Q: How to turn a sequence of words into
a sequence of vectors?
• A: Use one-hot encoding

▪ Q: How to handle different lengths of
sequences?

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Input: a sequence of vectors.
▪ Output: a sequence of vectors.
▪ Example: Machine translation

• Input: How are you?
• Output: Wie geht es dir?

▪ Q: How to turn a sequence of words into
a sequence of vectors?
• A: Use one-hot encoding

▪ Q: How to handle different lengths of
sequences?
• A: Use an RNN with a special end-

of-sentence token.

Sequence-to-Sequence Models

5

Encoder Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

Limitation of RNNs

6

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

Limitation of RNNs

6

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention

Limitation of RNNs

6

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’20x’2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention
• Represent the current word using

the representations of all other
words.

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’20x’2

▪ Main Problem: In an RNN (or LSTM) far
away words are not much related.
• Jane went to the cafeteria to buy a

cup of coffee, but she couldn't buy
anything because it was closed.

▪ All the information is encoded in one
vector.

▪ Solution: Self-Attention
• Represent the current word using

the representations of all other
words.

• But how does self-attention work in
detail?

Limitation of RNNs

6

Jane itwent

x1 x20x2

x’1 x’20x’2

▪ is a matrix (trainable).V

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2V ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2V ⋅v1

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2 V ⋅v1 v2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1

α1
1 ⋅ α1

2 ⋅ α1
20 ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’2

α2
1 ⋅α2

2 ⋅ α2
20 ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’20x’2

α20
1 ⋅ α20

2 ⋅ α20
20 ⋅

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’20x’2

▪ is a matrix (trainable).V
▪ Compute the value vectors

• vi = V ⋅ xi

▪ Prepare weights αi
1, …, αi

m ≥ 0
▪ New vector .x′￼i = αi

1v1 + … + αi
mvm

▪ How to obtain the weights ?αi
1, …, αi

m

Self-Attention: The Idea

7 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Jane itwent

x1 x20x2v1 v2 v20

x’1 x’20x’2

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]
(2) , , k1 = [3

2] k2 = [30
10] k3 = [11

3]

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]
(2) , , k1 = [3

2] k2 = [30
10] k3 = [11

3]
(3) , , , …α1

1 = 9 α1
2 = 60 α1

3 = 20

▪ Idea: is high, if two vectors and
are similar for a given context.

αi
j xi xj

▪ Let , be matrices (trainable):Q K
(1) Compute the query vectors:

qi = Q ⋅ xi
(2) Compute the key vectors:

kj = K ⋅ xj

(3) is the dot product of and ,

i.e., .

αi
j qi kj

ai
j = qT

i ⋅ kj

(4) Apply softmax to .αi
1, …, αi

m

Self-Attention: Computing the Weights αi
j

8

Example

▪
, , x1 =

1
1
0
0

x2 =

1
2
3
4

x3 =

0
0
1
2

▪ , Q = [1 0 0 0
1 2 3 4] K = [1 2 3 4

1 1 1 1]
(1) , , q1 = [1

3] q2 = [1
30] q3 = [0

11]
(2) , , k1 = [3

2] k2 = [30
10] k3 = [11

3]
(3) , , , …α1

1 = 9 α1
2 = 60 α1

3 = 20

(4) , , , …α1
1 = 0.0 α1

2 = 1.0 α1
3 = 0.0

▪ Deep Learning allows for learning good representations.

▪ There are different DL building blocks for learning good representations.

▪ Self-attention is a DL building block that overcomes limitations of an RNN.

Summary

9

Questions?

10

▪ Background

▪ Transformers

• Introduction

• Architecture

• Inference

• Training

▪ Transformer Applications

▪ Crossmodal Learning

Transformers

11

▪ Sequence-to-Sequence Model.

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Transformer

Encoder

Transformer

Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector(s)

▪ Sequence-to-Sequence Model.
▪ Based on self-attention.

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Transformer

Encoder

Transformer

Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector(s)

▪ Sequence-to-Sequence Model.
▪ Based on self-attention.
▪ Transformer literally “transformed”

current deep learning architectures.

• Natural Language Processing

(ChatGPT!, BERT, GPT, …)

• Vision (ViT, …)

• Speech (Conformer, …)

• Bioinformatics (AlphaFold, …)

• Crossmodal Learning (LXMERT, ViL-

BERT, …)

• …

Transformer: Introduction

12 A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information Processing Systems 30, 2017

Transformer

Encoder

Transformer

Decoder

x1 x2 x3 xm

y1 y2 y3 yn

vector(s)

Transformer Variants

13 T. Lin, Y. Wang, X. Liu, and X. Qiu, “A Survey of Transformers.” 2021

A Survey of Transformers 7

X-
fo

rm
er

s

Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]

Relative Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. TUPE[63], Roformer[124]

Implicit Rep. Complex Embedding[140], R-Transformer [144], CPE[20]

LayerNorm

Placement post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]

Substitutes AdaNorm[153], scaled ✓2 normalization[93], PowerNorm[121]

Norm-free ReZero-Transformer[5]

FFN

Activ. Func. Swish[106], GELU[14, 28], GLU[118]

Enlarge
Capacity

Product-key Memory[69], Gshard[71], Switch Transformer[36],
Expert Prototyping[155], Hash Layer[110]

Dropping All-Attention layer[127], Yang et al. [157]

Arch.
Level

Lighweight Lite Transformer[148], Funnel Transformer[23], DeLighT[91]

Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]

ACT UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Divide &
Conquer

Recurrence Transformer-XL[24], Compressive Transformer[103], Memformer[147]
Yoshida et al. [160], ERNIE-Doc[30]

Hierarchy Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[48]

Alt. Arch. ET[123], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]

Pre-Train

Encoder BERT[28], RoBERTa[87], BigBird[163]

Decoder GPT[101], GPT-2[102], GPT-3[12]

Enc.Dec. BART[72], T5[104], Switch Transformer[36]

App.

NLP BERT[28],ET[123], Transformer-XL[24],Compressive Transformer[103], TENER[154]

CV Image Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3]

Audio Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56]

Multimodal VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView[29]

Fig. 3. Taxonomy of Transformers

A Survey of Transformers 7

X-
fo

rm
er

s

Module
Level

Attention

Sparse

Star-Transformer[43], Longformer[10], ETC[1], BigBird[163], Sparse Transformer[17]
BP-Transformer[158], Image Transformer[94], Axial Transformer[54]

Routing Transformer[111], Reformer[66], SAC[78], Sparse Sinkhorn Attention[132]

Linearized Linear Transformer[62], Performer[18, 19], RFA[95], Delta Net[113]

Prototype Clustered Attention[138], Informer[170]

Memory
Compress MCA[84], Set Transformer[70], Linformer[142]

Low-rank Low-rank Attention[45], CSALR[16], Nyströmformer [152]

Prior
Attention

Local Transformer[156], Gaussian Transformer[42]

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159]

CAMTL[98]

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[131]

Multi-head

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44]

Dynamic Routing[40, 74]

Position
Encoding

Absolute BERT[28], Wang et al. [139], FLOATER[85]

Relative Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
DeBERTa[50]

Other Rep. TUPE[63], Roformer[124]

Implicit Rep. Complex Embedding[140], R-Transformer [144], CPE[20]

LayerNorm

Placement post-LN[28, 83, 137], pre-LN[6, 17, 67, 136, 141]

Substitutes AdaNorm[153], scaled ✓2 normalization[93], PowerNorm[121]

Norm-free ReZero-Transformer[5]

FFN

Activ. Func. Swish[106], GELU[14, 28], GLU[118]

Enlarge
Capacity

Product-key Memory[69], Gshard[71], Switch Transformer[36],
Expert Prototyping[155], Hash Layer[110]

Dropping All-Attention layer[127], Yang et al. [157]

Arch.
Level

Lighweight Lite Transformer[148], Funnel Transformer[23], DeLighT[91]

Connectivity Realformer[51], Predictive Attention Transformer[143], Transparent Attention[8]
Feedback Transformer [34]

ACT UT[26], Conditional Computation Transformer[7], DeeBERT[150], PABEE[171], Li et al. [79],
Sun et al. [129]

Divide &
Conquer

Recurrence Transformer-XL[24], Compressive Transformer[103], Memformer[147]
Yoshida et al. [160], ERNIE-Doc[30]

Hierarchy Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[48]

Alt. Arch. ET[123], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167]

Pre-Train

Encoder BERT[28], RoBERTa[87], BigBird[163]

Decoder GPT[101], GPT-2[102], GPT-3[12]

Enc.Dec. BART[72], T5[104], Switch Transformer[36]

App.

NLP BERT[28],ET[123], Transformer-XL[24],Compressive Transformer[103], TENER[154]

CV Image Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3]

Audio Speech Transformer[31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56]

Multimodal VisualBERT[75], VLBERT[125], VideoBERT[128], M6[81], Chimera[46], DALL-E[107], CogView[29]

Fig. 3. Taxonomy of Transformers

http://arxiv.org/abs/2106.04554

The Transformer Encoder

14

x1 x2 x3 xm

Encoder

▪ Self-Attention is the main component
of a Transformer.

The Transformer Encoder

14

x1 x2 x3 xm

Self-
Attention

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)

• FFN(x) = Linear(ReLu(Linear(x)))

• Weights of FFN are shared

The Transformer Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)

• FFN(x) = Linear(ReLu(Linear(x)))

• Weights of FFN are shared

▪ Multi-head attention + concatenation

• 8 Self-attention layers.

• The outputs are concatenated.

The Transformer Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

Self-
Attention

Self-
Attention

Self-
Attention

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)

• FFN(x) = Linear(ReLu(Linear(x)))

• Weights of FFN are shared

▪ Multi-head attention + concatenation

• 8 Self-attention layers.

• The outputs are concatenated.

▪ Stacked Transformer blocks (make it
deep!)

The Transformer Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

Self-
Attention

Self-
Attention

Self-
Attention

⨉ N

▪ Self-Attention is the main component
of a Transformer.

▪ Another component in FFN (Feed-
forward Network)

• FFN(x) = Linear(ReLu(Linear(x)))

• Weights of FFN are shared

▪ Multi-head attention + concatenation

• 8 Self-attention layers.

• The outputs are concatenated.

▪ Stacked Transformer blocks (make it
deep!)

The Transformer Encoder

14

x1 x2 x3 xm

Self-
Attention

FFN

Self-
Attention

Self-
Attention

Self-
Attention

⨉ N

x’1 x’2 x’3 x’m

▪ The decoder is similar to the encoder.

The Transformer Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

The Transformer Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

▪ Linear + Softmax

The Transformer Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

y2 y3 yny1

Linear

Softmax

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

▪ Linear + Softmax
▪ Cross-attention

• The queries are obtained from the
output vectors of the previous
decoder layer.

• The keys and values are from the
output vectors of the encoder.

The Transformer Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attentionx’1 x’2 x’3 x’m

kj=Kx’j

vj=Vx’j

y2 y3 yny1

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer

Encoder

qi=Qyi

Linear

Softmax

▪ The decoder is similar to the encoder.
▪ Masked self-attention

• Later inputs are not attended to (i.e.,
attention weights for later inputs
are zero) → Transformer Training

αi
j

▪ Linear + Softmax
▪ Cross-attention

• The queries are obtained from the
output vectors of the previous
decoder layer.

• The keys and values are from the
output vectors of the encoder.

The Transformer Decoder

15

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attentionx’1 x’2 x’3 x’m

kj=Kx’j

vj=Vx’j

y2 y3 yny1

x1 x2 x3 xm

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

Transformer

Encoder

qi=Qyi

Linear

Softmaxyi’= v1 + … + vmα 𝗂
𝟣 α 𝗂

𝟣

=qi·kjα 𝗂
𝗃

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.
▪ Positional Encoding

• For preserving the input order.

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.
▪ Positional Encoding

• For preserving the input order.
• Use sine and cosine (similar to binary

representation of numbers)

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ Residual connection
• Model is less dependent on the number of

layers.
▪ Layer normalization

• Normalize features of each vector using
their mean and variance.

• Faster and more stable training.
▪ Positional Encoding

• For preserving the input order.
• Use sine and cosine (similar to binary

representation of numbers)
▪ Vectorization

• Faster training and inference due to parallel
processing.

The Transformer: Further details

16 1. https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

2. https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

FFN
⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

FFN
⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2 y3y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2 y3y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ The “BOS” vector is the first input to

the decoder.

• “BOS”: a vector representing the

beginning of sentence.
▪ Decoder is autoregressive, i.e.,

• output of the decoder becomes
the input to the decoder at the next
step.

yt

Transformer: Inference

17

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN
⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

y2 y3 yny1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m

Transformer: Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

FFN ⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m

Transformer: Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

Transformer: Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output is compared against
ground-truth to compute the
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

Transformer: Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

̂y2 ̂y3 ̂yn̂y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output is compared against
ground-truth to compute the
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

▪ Q: If is fed to the decoder
simultaneously, how does the model (avoid
cheating and) learn to predict from ?

y1, y2, …, yn−1

yt+1 yt

Transformer: Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

̂y2 ̂y3 ̂yn̂y1

Transformer

Encoder

Linear

Softmax

▪ First, encoder outputs x′￼1, x′￼2, …, x′￼m
▪ Ground-truth one-hot vectors

 with the “BOS” vector are
fed to the decoder simultaneously.
y1, y2, …, yn−1

▪ Output is compared against
ground-truth to compute the
loss.

ŷ1, ŷ2, …, ŷn
y1, y2, …, yn

▪ Q: If is fed to the decoder
simultaneously, how does the model (avoid
cheating and) learn to predict from ?

y1, y2, …, yn−1

yt+1 yt
• A: Masked self-attention prevents using

the information of with .yt+i i ≥ 1

Transformer: Training

18

Self-
Attention

Self-
Attention

Self-
Attention

Self-
Attention

x1 x2 x3 xm

x’1 x’2 x’3 x’m

FFN ⨉ N

BO
S y1 y2 yn-1

Self-
Attention

Self-
Attention

Self-
Attention
Masked Self-

Attention

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

̂y2 ̂y3 ̂yn̂y1

Transformer

Encoder

Linear

Softmax

▪ Transformer encoder and decoder are based on self-attention.

▪ Decoder uses cross-attention.

▪ Masked self-attention in the decoder allows for parallel processing.

Summary

19

Questions?

20

▪ Background

▪ Transformers

▪ Transformer Applications

• Machine Translation (vanilla Transformer)

• Text Classification (BERT)

• Text Generation (GPT, ChatGPT)

• Image Classification (ViT)

▪ Crossmodal Learning

Transformer Applications

21

B
L
E
U

 S
C

O
R
E

RNN Enc-Dec Att​RNN Enc-Dec Att

GNMT+RL​GNMT+RL

Transformer Big​Transformer Big
Transformer Big + MoS​Transformer Big + MoS

BERT-fused NMT​BERT-fused NMT BiBERT​BiBERT

Other models Models with highest BLEU score

2016 2017 2018 2019 2020 2021

5

10

15

20

25

30

35

Machine Translation (Transformer)

22 https://paperswithcode.com/sota/machine-translation-on-wmt2014-english-german

Transformer-based

CNN-based

LSTM-based

WMT2014 English-German dataset

▪ BERT (Bidirectional Encoder
Representations from Transformers)

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.

2. https://huggingface.co/blog/bert-101

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.

2. https://huggingface.co/blog/bert-101

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

▪ Example: “Can you get medicine for
someone pharmacy”

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.

2. https://huggingface.co/blog/bert-101

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

▪ Example: “Can you get medicine for
someone pharmacy”
• Pre-BERT: (Irrelevant) Information

about getting a prescription filled.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.

2. https://huggingface.co/blog/bert-101

Before

▪ BERT (Bidirectional Encoder
Representations from Transformers)

▪ BERT helps Google provide better
results since November of 2020.

▪ Example: “Can you get medicine for
someone pharmacy”
• Pre-BERT: (Irrelevant) Information

about getting a prescription filled.
• Post-BERT: Google understands

that “for someone” relates to picking
up a prescription for someone else.

Text Classification (BERT)

23 1. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” NAACL 2019.

2. https://huggingface.co/blog/bert-101

After

▪ Pre-Training

• Train a model on a large set of

data.

• The model learns good

representations of the input.

Background: Pre-Training and Fine-Tuning

24

▪ Pre-Training

• Train a model on a large set of

data.

• The model learns good

representations of the input.
▪ Fine-tuning

• Train the model again on the target
task with usually less data.

• Modify the model if needed for the
target task (e.g., add a different
classification layer to the original
model).

Background: Pre-Training and Fine-Tuning

24

▪ Pre-Training

• Train a model on a large set of

data.

• The model learns good

representations of the input.
▪ Fine-tuning

• Train the model again on the target
task with usually less data.

• Modify the model if needed for the
target task (e.g., add a different
classification layer to the original
model).

Background: Pre-Training and Fine-Tuning

24

Example

▪ Train a image classification model (e.g.,

ResNet) on the ImageNet dataset.

▪ Fine-tune the model on robotic scenes.

▪ Pre-Training

• Train a model on a large set of

data.

• The model learns good

representations of the input.
▪ Fine-tuning

• Train the model again on the target
task with usually less data.

• Modify the model if needed for the
target task (e.g., add a different
classification layer to the original
model).

Background: Pre-Training and Fine-Tuning

24

Example

▪ Train a image classification model (e.g.,

ResNet) on the ImageNet dataset.

▪ Fine-tune the model on robotic scenes.

Imagenet Target task

▪ Transformer Encoder

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Transformer Encoder
▪ Pre-training dataset

• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Transformer Encoder
▪ Pre-training dataset

• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model

• Input: a sentence from a the dataset.

• Mask some input tokens at random.

• Predict those masked tokens.

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Transformer Encoder
▪ Pre-training dataset

• BooksCorpus (800M words)

• English Wikipedia (2,500M words)

▪ Pre-training task 1: Masked Language Model

• Input: a sentence from a the dataset.

• Mask some input tokens at random.

• Predict those masked tokens.

▪ Pre-training task 2: Next Sentence Prediction

• Input: concatenation of two sentences A

and B.

• 50% of the time B is A’s next sentence.

• 50% of the time B is a random sentence.

BERT: Architecture and Pre-training

25

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

▪ Fine-Tuning: Use CLS for prediction.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

Classifier

▪ Fine-Tuning: Use CLS for prediction.
▪ It achieved state-of-the-art performance

on three classification tasks

• SQuAD (Stanford Question

Answering Dataset)

• SWAG (Situations With Adversarial

Generations)

• GLUE (General Language

Understanding Evaluation) a
benchmark suit of nine tasks:

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

Classifier

▪ Fine-Tuning: Use CLS for prediction.
▪ It achieved state-of-the-art performance

on three classification tasks

• SQuAD (Stanford Question

Answering Dataset)

• SWAG (Situations With Adversarial

Generations)

• GLUE (General Language

Understanding Evaluation) a
benchmark suit of nine tasks:

▪ Idea introduce an extra token (CLS) for
classification.

BERT: Fine-Tuning

26 https://huggingface.co/blog/bert-101

CLS x1 x2 xm

CLS’ x’1 x’2 x’m

BERT =
Transformer

Encoder

Classifier

▪ GPT (Generative Pre-trained Transformer)

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

This is a poem written by Robert Frost about the perils of machine
learning.
Alas! The machines are here.
They’ll eat our brains and take our jobs,
They’ll do our thinking for us,
And all that we’ll be able to do
Is program them.
Alas! Here comes the Machine

https://transformer.huggingface.co/doc/gpt2-large

▪ GPT (Generative Pre-trained Transformer)
• A language model

▪ Look at part of a sentence and predict the next
word.

▪ Based on the Transformer decoder.
• Trained with next token prediction.

▪ Three versions
▪ GPT (2018) 117 M parameters
▪ GPT-2 (2019) 1.5 B parameters
▪ GPT-3 (2020) 175 B parameters
▪ GPT-3.5 (2022) 175 B parameters
▪ GPT 4 (2023) ?

▪ Prompt engineering with GPT-3
• The description of the task is embedded in the

input.
• The output is the solution.

Text Generation (GPT)

27 1. https://transformer.huggingface.co/doc/gpt2-large

2. https://blog.andrewcantino.com/blog/2021/04/21/prompt-engineering-tips-and-tricks/

English: This sandwich is very tasty.
Spanish: Este sándwich es muy rico.

This is a poem written by Robert Frost about the perils of machine
learning.
Alas! The machines are here.
They’ll eat our brains and take our jobs,
They’ll do our thinking for us,
And all that we’ll be able to do
Is program them.
Alas! Here comes the Machine

https://transformer.huggingface.co/doc/gpt2-large

ChatGPT

28

▪ Uses Transformer encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer

Encoder

x1 x2 xm

x’1 x’2 x’m

▪ Uses Transformer encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer

Encoder

Classifier

x1 x2 xm

x’1 x’2 x’m

▪ Uses Transformer encoder.
▪ Input image is tiled into sections.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer

Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m

▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an

embedding using a linear layer
▪ The results are fed to the Transformer

encoder.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer

Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m

▪ Uses Transformer encoder.
▪ Input image is tiled into sections.
▪ The sections is turned into an

embedding using a linear layer
▪ The results are fed to the Transformer

encoder.
▪ Vision Transformers are able to capture

global and wider range relations.
▪ However, more training data is needed.

Image Classification (Vision Transformer)

29 https://en.wikipedia.org/wiki/Vision_transformer#/media/File:Vision_Transformer.gif

CLS

CLS’

Transformer

Encoder

Classifier

x1 x2 xm

Ground-truth label: Tree

x’1 x’2 x’m

▪ The Transformer architecture has been used in different applications.

▪ BERT is based on the Transformer encoder.

▪ GPT is based on the Transformer decoder.

Summary

30

▪ Background

▪ Transformers

▪ Transformer Applications

▪ Crossmodal Learning

• Introduction

• Vision and Language Integration Methods

Crossmodal Learning

31

▪ In DL language and vision have been
tackled separately until 2014.

▪ Integrating two or more modalities has
recently gained increased attention.

• language, vision, speech, sound,

proprioception, …

▪ Some crossmodal (vision and

language) tasks:

• Image Captioning

• Visual Question Answering

• Image Retrieval

• Language-to-Image Generation

Multimodal Learning

32

Image Captioning

33 O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell: A Neural Image Caption Generator,” CVPR 2015

Image Captioning

Visual Question Answering

34 S. Antol et al., “VQA: Visual Question Answering,” ICCV 2015

Visual Question Answering

Image Retrieval

35 A. Radford et al., “Learning Transferable Visual Models From Natural Language Supervision,” ICML 2021

Language-to-Image Generation

36 https://imagen.research.google/

Vision Language Integration Techniques

37

Layers

 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

Vision Language Integration Techniques

37

Layers

 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

▪ Concatenation

• f(v, l) = [v; l]

Vision Language Integration Techniques

37

Layers

 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Q: Given two vectors from two different
modalities (e.g., vision and language)
how would you integrate them?

▪ Concatenation

• f(v, l) = [v; l]

▪ Element-wise Multiplication

•

• Example:

f(v, l) = v ⊙ l

[1
2] ⊙ [2

3] = [2
6]

Vision Language Integration Techniques

37

Layers

 (e.g., CNN + ReLu)

Vector

Classifier / Decoder

vision O
utputlanguage

Layers

Layers

Integration
Layer(s) Layers

▪ Feature-Wise Transformation

• The language input “modulates” how

the image input is processed.

•

• and are vectors computed from
language vector (e.g., using a
linear layer)

f(v, l) = (αl ⊙ v) + βl

αl βl
l

Feature-Wise Transformation

38 1. https://distill.pub/2018/feature-wise-transformations/

2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018

https://distill.pub/2018/feature-wise-transformations/

▪ Feature-Wise Transformation

• The language input “modulates” how

the image input is processed.

•

• and are vectors computed from
language vector (e.g., using a
linear layer)

f(v, l) = (αl ⊙ v) + βl

αl βl
l

Feature-Wise Transformation

38 1. https://distill.pub/2018/feature-wise-transformations/

2. E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. Courville, “FiLM: Visual Reasoning with a General Conditioning Layer,” AAAI 2018

CNN

Linear

ResBlock

vision
language

ResBlock

ResBlock

Vector

RNN

Example: FiLM architecture

https://distill.pub/2018/feature-wise-transformations/

▪ Q: How would you integrate vision and
language using Transformers?

Transformer-Based Models

1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019

2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019

3.

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

Transformer-Based Models

1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019

2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019

3.

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).

• e.g., “What is in front of the laptop?”

li

Transformer-Based Models

1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019

2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019

3.

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).

• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction

Transformer-Based Models

1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019

2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019

3.

FFN

⨉ N

CLS l1 l2 ln

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

l1 l2 lnCLS’

Transformer Encoder

FFN

⨉ N

IMG v1 v2 vm

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

v1 v2 vmIMG’

Transformer Encoder

k, v
k, v q

q

Vision
Language

▪ Q: How would you integrate vision and
language using Transformers?

▪ : detected bounding boxes in image.vi

▪ : language tokens (e.g., words).

• e.g., “What is in front of the laptop?”

li

▪ IMG and CLS are used for prediction
▪ Allows better representation of

relationships between objects and
words.

Transformer-Based Models

1. VQA

39 1. H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers,” EMNLP 2019

2. J. Lu, D. Batra, D. Parikh, and S. Lee, “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks,” NeurIPS 2019

3.

FFN

⨉ N

CLS l1 l2 ln

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

l1 l2 lnCLS’

Transformer Encoder

FFN

⨉ N

IMG v1 v2 vm

Self-
Attention

Self-
Attention

Self-
Attention

Cross-
Attention

v1 v2 vmIMG’

Transformer Encoder

k, v
k, v q

q

Vision
Language

▪ RNNs and CNNs are constrained by the input space (1D, 2D spaces rest.)

▪ Transformer operates on sets

• Adding new modalities is easier than in the case of

▪ How would you combine vision and language using a transformer?

• Add new modalities and introduce modality-specific embeddings / flags.

Transformer

40

Transformer-Based Models

2. PaLM-E (Pathways Language Model with Embodiment)

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.org/abs/2303.03378

https://palm-e.github.io/

http://arxiv.org/abs/2303.03378

Transformer-Based Models

2. PaLM-E (Pathways Language Model with Embodiment)

41 D. Driess et al., “PaLM-E: An Embodied Multimodal Language Model.” http://arxiv.org/abs/2303.03378

https://palm-e.github.io/

http://arxiv.org/abs/2303.03378

▪ Crossmodal (aka multimodal) learning is an active research area.

▪ There are several ways to integrate different modalities.

▪ Transformer cross-attention can be used to integrated different modalities.

Summary

42

▪ Generalizability

• Do the models generalize to new situations?

▪ Continual learning

• How can the models learn new data without forgetting previous ones?

▪ Explainability

• How do the models come to the decisions?

▪ Ethical Issues

• How can the models be aligned with human values?

Open Questions in Deep Learning Research

43

Questions?

44

▪ Transformer

• The Illustrated Transformer

• Dive into Deep Learning - Chapter 11: Attention Mechanisms and Transformers

• BERT 101 🤗 State Of The Art NLP Model Explained

• Stanford Seminar - Transformers United 2023: Introduction to Transformers w/

Andrej Karpathy

• Speech and Language Processing: Chapter 10 Transformers and Pretrained

Language Models

• Formal Algorithms for Transformers

▪ Vision and Language Integration

• A. Mogadala, M. Kalimuthu, and D. Klakow, “Trends in Integration of Vision and

Language Research: A Survey of Tasks, Datasets, and Methods,” JAIR 2021

Resources

45

https://jalammar.github.io/illustrated-transformer/
https://d2l.ai/chapter_attention-mechanisms-and-transformers/index.html
https://huggingface.co/blog/bert-101
https://www.youtube.com/watch?v=XfpMkf4rD6E
https://www.youtube.com/watch?v=XfpMkf4rD6E
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
http://arxiv.org/abs/2207.09238
https://www.jair.org/index.php/jair/article/view/11688
https://www.jair.org/index.php/jair/article/view/11688

